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A boundary-layer model, based on computational results, describes a number of 
features of two-dimensional convection in a porous medium: the heat flux, 
velocity, length and temperature scales and the pattern of flow. The cell structure 
is different from that for convection in a viscous fluid. The model is valid for a 
limited range of the Rayleigh number. 

1. Introduction 
Two-dimensional boundary-layer models provide useful aids in the description 

of fluid flows at high values of the Rayleigh number, both in predicting the 
dependence of the heat flux, velocities, length scales and temperatures on the 
Rayleigh number, and in describing qualitative flow features. For example 
Robinson (1967) has treated steady cellular flow in fluids with Prandtlnumbers of 
order unity for the cases of all boundaries rigid, rigid horizontal and free vertical 
boundaries (stress-free), and all boundaries free, Turcotte & Oxburgh (1967) have 
described certain features of convection in the earth’s mantle using an infinite 
Prandtl number model with all boundaries free, and Robinson (1973) has based 
a discussion of the development of fluctuations in thermal convection on a 
boundary-layer model. 

There are significant differences between the flow of a fluid in a porous medium 
and the motion of a viscous fluid: for example, there is no diffusion of vorticity in 
a porous medium. Therefore it is necessary to develop a new boundary-layer 
model to describe the fluid behaviour in a porous medium. 

Whereas the boundary-layer models for flow in a viscous fluid all include a 
moving isothermal interior region, in a porous medium the ascending and 
descending plumes, which are boundary layers in the model, occupy the entire 
space away from the boundary layers on the horizontal plates. Since with the 
relaxation of constraints implied by these flow features the system of model 
balances is no longer fully determined, the boundary-layer analysis is based on 
two results from computations. 

In  this way a boundary-layer model has been developed which fits the 
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remaining computational data, and describes the qualitative features of the flow. 
The :-power law dependence of Nusselt number on Rayleigh number suggested 
here provides a good fit to the band of experimental points available. 

2. Equations 

units of length, temperature, pressure and velocity 
The field variables can be conveniently made dimensionless by choosing as 

H ,  +AT, povK/k, KIH, 

where H is the plate separation, AT is the temperature difference between the 
plates, po is the density of the fluid at the mean temperature, v is the kinematic 
viscosity of the fluid, K is the thermal diffusivity and k is the permeability. 

For steady two-dimensional motion the field equations, simplified by the 
Boussinesq approximation, can be written with the above units in dimensionless 
form (Wooding 1956): 

(1) 

(2) 

u = -ap/ax, 

v = - ap/ay + $AT, 

The dimensionless parameter of the flow is the Rayleigh number 

A = gaATkH/KV, 

where g is the gravitational acceleration and a is the coefficient of thermal expan- 
sion of the fluid. The flow region considered is a closed rectangular box (figure 1) 
with thermally insulated walls and non-dimensional temperatures of T = 1 at 
the base and T = - I at the top. 

The computations were carried out to determine the horizontal cell width 
which maximized the heat flux at a number of values of the Rayleigh number, 
and the values of other flow variables as well as the flow configuration were 
determined. These calculations were carried out assuming that the flow is two- 
dimensional and steady. Other computations (Horne & O’Sullivan 1974) suggest 
that the flow may be unsteady at higher Rayleigh number and experimental 
work indicates that the preferred mode of convection may be three-dimensional 
and unsteady (Caltagirone, Cloupeau & Combarnous 1971). However, the 
experimental results of Elder (1967) in the constrained two-dimensional con- 
figuration of a Heb  Shaw cell do confirm the existence of cells such as those 
computed here. 

3. Boundary-layer analysis 
Past attempts to develop a boundary-layer model of convection in a porous 

medium include the consideration of the horizontal boundary layer alone by 
Elder (1967), which suggested the linear dependence of Nusselt number on 
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Rayleigh number found for a limited range of Rayleigh number in some experi- 
ments, but which implied a zero vorticity in the horizontal boundary layer. This 
analysis cannot be extended to a complete cell (Robinson 1969) since the match- 
ing of the zero vorticity in the boundary layer on to the interior solution leads to 
the contradiction that the boundary-layer thickness is not small. 

Palm, Weber & Kvernvold (1972) described a zero-velocity isothermal 
interior, and assumed a temperature of order unity in the vertical boundary 
layers. They derived a Nusselt number, Rayleigh number dependence of 
N u  N A*. Again the analysis of Robinson suggests that this model will not be 
fully self-consistent. This may be seen as follows. In  the model of Palm et al. 
the horizontal velocity in the horizontal boundary layers (which are of thickness 
of order A-4) is of order A .  The leading term in the vorticity equation in those 
boundary layers (obtained by taking the curl of the vector momentum equation) 
is then &lay, of order A*. If this is matched to the zero-velocity interior i t  follows 
that the horizontal velocity is zero to this order within these boundary layers 
and the analysis thus breaks down. 

The following alternative argument against the existence of an interior region 
in a steady-state solution illustrates the qualitative difference between the flow 
pattern in a porous medium and in a viscous fluid. 

In  a viscous fluid the interior region is moving (Pillow 1952; Turcotte & 
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FIGURE 2. Aspect ratio of the cell L / H  as a function of Rayleigh number A .  The best-fit 
curve L / H  = 1.7(A/Ac)-% is shown together with computed results. 0, O’Sullivan; ., Combarnous (1970); 0, Combarnous & Bia (1971); 0 ,  Vlasuk (1972). 

Oxburgh 1967; Robinson 1967, 1969). A fluid particle at the outer edge of this 
interior region then alternately passes hot and cold boundary-layer regions , and 
the constant-temperature interior region is maintained. 

In  a porous medium the interior region would be a t  rest (Palm et al. 1972). A 
fluid particle at the outer edge of such a motionless interior region will then remain 
adjacent to a boundary layer having a temperature which is fixed in time and 
would thus tend towards that temperature. The buoyancy force would then 
accelerate the particle, which would join in the motion of the boundary layer. In 
this manner the boundary layer will entrain fluid from the interior until the 
interior region is destroyed. Thus an interior region will not be a feature of a 
steady-state solution for convection in a porous medium. 

A boundary-layer model can only be constructed for flow in a porous medium 
provided that (a) there is no interior region, i.e. the vertical boundary layers 
occupy the entire cell, which has a horizontal length scale dependent on the 
Rayleigh number, and ( b )  not all of the mass circulation passes through the 
horizontal boundary layers; and indeed these flow features are evident in the 
computed results. The temperatures in the vertical boundary layers must then 
also be dependent on the Rayleigh number. With the relaxation of constraints 
implied by these flow features, the system of balances is no longer fully deter- 
mined. The boundary-layer analysis is therefore based on two results from 
computations: that the horizontal cell width L for maximum heat flux varies as 
L/H N A-3 and that the Nusselt number varies as Nu N A%. Figures 2 and 3 
illustrate this dependence. The best-fit curves are 

NU = 1*55(A/A,)#, L/H = 1*7(A/A,)-*, ( ‘ ) J  ( 5 )  

where A, = 47r2 is the critical Rayleigh number. 
In  the vertical boundary layers the flow is driven by the buoyancy force, 
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FIGURE 3. Nusselt number Nu 21s. Rayleigh number A.  The best-fit curve Nu = 
1.55(A/AC)) is shown. The computed results are from the sources noted in figure 2. 

v N AT, and the heat flux, vT, per unit horizontal length is proportional to A).  
Dependences of v N A% and T N A d  are predicted in this region. Figures 4 and 6; 

illustrate these dependences, and it is seen that the agreement with the computed 
results is excellent. The best-fit curves are 

w(L, & E l )  = ll(A/A,)g, T(L, + H )  = 0*5(A/AC)-9. 

In  the horizontal boundary layers, the boundary-layer width will be the 
inverse of the Nusselt number, and there must be a balance between the heat 
conduction and convection. Thus u N (L/H)Nu2 in those regions. A dependence 
of u N A3 ispredicted. Figure 4 illustrates this dependence, and i t  is seen that the 
agreement with the computed results is again excellent. The best-fit curve is 

For each cell the dimensionless mass flux in the vertical boundary layers is of 
order A*, and the dimensionless mass flux in the horizontal boundary layers is of 
order unity. Thus there is a greater mass flux in the vertical boundary layers than 
in the horizontal boundary layers, and not all of the mass flux passes through the 
horizontal boundary layers. This flow feature is reflected in the magnitude of 
the temperature in the vertical boundary layers: T - A-*. This qualitative 
behaviour is found in the computed results, as illustrated in figure 6, where for a 
Rayleigh number of 1000, the flow between the streamlines $ = 0.6 and 
@ = $max joins the boundary layer after it has left the horizontal boundaries, 
and there is a rapid spreading of the hot plume in this region together with a rapid 
decrease in the temperature of the plume. 
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FIauRE 4. Computed values of v(L, $23) and u(+L, 0) together with best-fit 

curves. 0, w(Lm + H ) ;  ., u(+L, 0). 
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FIGURE 5. Computed values of T(L, &H) together with the best-fit curve 
T(L, @I) = 0.5 (A1AJ-B. 

The model suggests that in the vertical boundary layers the heat convection 
term v aT/ay is of order of magnitude A% and the conduction term a2T/i3x2 is of 
order of magnitude AS. This modelling remains valid so long as the conduction 
term does not dominate, for in that case the heat flux will diffuse from the rising 
plume into the descending plume, the interior temperature gradients (away from 
the horizontal boundaries) will decrease, and the flow will move more slowly. 
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FIGURE 6. Temperature and stream-function 
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It is thus evident that the model will not be valid for sufficiently large values of 
the Rayleigh number. An estimate of the maximum RayIeigh number for which 
the model description may be expected to hold is obtained by equating the 
estimates for the vertical velocity v and the diffusion factor (L/H)-a. The required 
balance is 

v N (L/H)-2,  9) 

i.e. 1 l(A/A,)* N (A/A,)*/2*9, (10) 

i.e. A 11 1000.4,. (11) 
30 FLM 75 
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In  the range considered here, A, < A < IOOOA,, the convection term will 
dominate, and the model provides a valid description. For Rayleigh numbers 
greater than about 1000A, the model fails, and the flow will not follow this 
pattern. 

Robinson ( 1973) has similarly developed a boundary-layer model for convec- 
tion in a viscous fluid bounded by rigid horizontal boundaries, which was valid 
for a restricted range of the parameters. In  that case an energy balance could be 
satisfied for some range of the Rayleigh number and the failure of the modelling 
provided a description of the development of a fluctuating motion. 

It is also necessary to check the predicted magnitudes of the pressure varia- 
tions, as earlier modelling attempts did not achieve self-consistency. From 
(I), (5) and (8) the pressure difference along the horizontal boundary layers is of 
order unity. From (2) and (6) the pressure difference along the vertical boundary 
layers is of order A* or smaller. Self-consistency is obtained by the requirement 
that the first-order vertical velocity equation is 

v = 4AT, 

and the horizontal pressure differences are balanced by lower-order terms. 
It is worth noting that, by scaling the Rayleigh number by its critical value 

A,  = 4n2, the constants in the best-fit curves for the temperature, Nusselt 
number and length scales are all of order unity; note (4), ( 5 ) ,  (9) and (11). The 
values of the constants for the velocities are larger. This is self-consistent: (’7) 
and (12) combine to give v(L,  &H) = 1O(A/A,)%, close to the value noted in (6). 

4. Relevance of the model 
The above analysis has limited practical significance since the steady two- 

dimensional flow considered may not be the preferred mode in a porous medium. 
The experiments of Elder (1967) show that two-dimensional cells of the type 
considered here do occur in the analogous Hele Shaw cell experiments. However, 
even these experiments show that the flow may not be steady. This is confirmed 
by the recent computations by Horne & O’Sullivan (1974), which indicate that 
alternative two-dimensional regimes may be possible, one being steady and 
including a number of narrow cells similar to those described here, the other 
unsteady and with horizontal length scales of the order of the plate separation. 
The heat flux is however similar in the two regimes. 

The $-power law dependence of the Nusselt number on the Rayleigh number 
suggested here provides a good fit to the majority of the experimental data 
(figure 7) .  The linear dependence indicated by some experimental results (Elder 
1967) and by both a simple dimensional argument and an upper-bound estimate 
(Gupta & Joseph 1973) lies above most of the experimental data. Some experi- 
mental data (Schneider 1963; Combarnous 1970) have shown further that the 
mean heat transfer does not depend solely on the Rayleigh number but also on 
the thermal characteristics of the constituting phases: the solid matrix and the 
saturating fluid. Thus for large Rayleigh numbers the basic assumptions of 
( 1 )  and (2) may be invalid. Further experiments, with a more careful choice of 
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FIGURE 7. Comparison of experimental results and the theoretical curve for Nusselt 
number N u  2)s. Rayleigh number A. -, theoretical curve; ., , 0, 0, experimental 
points (see Palm et al.) ; - - - -, bounds for experimental data (see Busse & Joseph 1972). 

grain size, need to be conducted before theoretical and experimental results can 
be satisfactorily compared. 

Although the model developed here adequately describes two-dimensional 
steady motion in a porous medium, the problem of the three-dimensional or 
transient character and the non-uniqueness of the flow remains unexplained. 
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